Finetuning quantized models like GGUF is generally challenging due to the loss of precision during quantization, but there are specific approaches and considerations for working with GGUF-format models. Here’s a breakdown of the possibilities and methods:
LoRA/QLoRA: Efficiently finetune with Low-Rank Adaptation (LoRA) or Quantized LoRA (QLoRA) to avoid full-parameter updates. This is cost-effective and preserves the base model’s weights .
from transformers import AutoModelForCausalLM, BitsAndBytesConfig
= BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_quant_type="nf4") # QLoRA setup
bnb_config = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B", quantization_config=bnb_config) model
Full finetuning: Requires significant GPU resources but avoids quantization artifacts .
Merge LoRA adapters (if used) back into the base model:
= model.merge_and_unload() # Combine LoRA with base model model
Convert to GGUF using llama.cpp
:
python convert.py --input /path/to/finetuned_model --output model-f16.gguf --outtype f16
Quantize (optional):
./quantize model-f16.gguf model-q4_k.gguf q4_k # 4-bit quantization
transformers
+ peft
for LoRA finetuning .llama.cpp
for GGUF conversion .f16
/f32
).For more details, refer to llama.cpp’s conversion guide or Hugging Face’s PEFT documentation .